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Numerical solutions of conservation equations are obtained for turbulent f low of non- 
Newtonian fluids in a circular tube. The forward marching procedure of Patankar and 
Spalding I was implemented in order to obtain the simultaneous development of the velocity 
and temperature fields by using the apparent viscosity of fluids. Prandtl's mixing length 
concept is used to determine the apparent turbulent shearing stress. Furthermore, local 
and average Nusselt numbers are obtained in the entrance region, as well as in the fully 
developed region. For the case of the fully developed region, values of the Nusselt numbers 
are compared both with the experimental data and empirical correlations. 
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I n t r o d u c t i o n  
Convective heat transfer to non-Newtonian fluids in tubes is a 
problem of practical significance. The non-Newtonian behavior 
of certain fluids is experienced in many industrial applications, 
such as those that require the use of solutions or melts of 
polymer materials, petroleum, and pharmaceuticals, as well as 
many other suspensions and emulsions. Until now, no study 
has been reported in the literature concerning the simultaneous 
thermal and hydrodynamic developing re#on of non-Newtonian 
fluids. Only certain limited conditions, such as the case of the 
fully developed velocity profile with developing temperature 
profile (Notter and Sleicher, 2 Edwards and Smith, 3 and Ju 
and Chou*) or the developing velocity profile in the absence 
of heat transfer (Dodge and Metzner, s Bowlus and Brighton, 6 
Mizushina et al., 7 and SalamiS), have been developed for both 
Newtonian and non-Newtonian fluids under turbulent flow 
regime in a tube. It should be noted, however, that Emery and 
Gessner 9 have computed velocity and temperature profiles for 
turbulent flow of a non-Newtonian fluid in the entrance region 
of heated parallel plates, which constitutes a different geometry. 

The purpose of this study was to solve the entrance region 
problem, where both the velocity field and temperature field 
are simultaneously developing in the case of turbulent flow of 
non-Newtonian fluids in a circular tube. These results should 
provide insight into the operation and design of heat transfer 
equipment. We begin the computations at the tube inlet, 
assuming that the fluid has uniform velocity and temperature 
and using only the following conditions: 

U(O,y)=Uo, U(x, 0)=0,  and V(x,0)=0 f o r x > 0  

From these conditions, it is assumed that there is no slip 
velocity at the wall. 
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N u m e r i c a l  a p p r o a c h  

The field equations that represent 
dimensional (2-D) flow in a tube are 

Ox flU)+ (rV)--O (1) 

cgU (~U 1 dP 1 
U - -  + V - + - -  (r~) (2) 

~x ~r p dx pr ~r 

and 

U - - +  V - --(ru 'T')  (3) 
& o, - ;  ~ \ Trr/ r Or 

where U is determined from Equation 2 by using the technique 
of Patankar and Spalding a and V is found from the continuity 
equation, Equation 1. By introducing Prandtl 's mixing length, 
we can express the turbulent shear stress as 

u'v'= - l  2 dU OU (4) 
0y 0y 

Furthermore, assuming that the turbulent Prandtl number 
is equal to 1, we can define the temperature deviation as follows: 

u ' T ' = - I  2 Ou OT (5) 
0y 0y 

It is further assumed that the mixing length, l, is given by 1 

~=0.41(1-e-r+/26)( y ) ,  Y<0.16 (6) 

l 2 
~=0.41(1 -e - r+/ z6 ) (~ ) - l . 53506(~-O.1 )  

incompressible two- 

3 y g 1 84 +01), 01_ y 06 
(7) 

-/=0.089, 0.6< -y (8) 
6 ~5 
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The momentum boundary layer thickness, 8, is derived from 
the integral momentum equation as 

dq~ 2dp+8* dU¢ f 
- - - t -  - ( 9 )  
dx U¢ dx 2 

where 

c~ + 1)(c~+2) (2cl + 1)(2cl +2  ) R 
(lO) 

2 - i ( 2 - n )  
e 1 - ( 1 1 )  

fin 

fl = - 0.05978 In(n) + 0.25 (12) 

6 * = F  n i  - ]8 [ ni  ] 82 (13) 
[_nil + (2 - 8 ( 2 -  n))J - Lni + 2 ( 2 -  8(2 - n))J 

The friction factor within the boundary layer of a tube is the 
modified form of the one proposed by Skelland I° for flat plate 
as follows: 

- R e '  - t)/(~. + i )  _ ( 1 4 )  

2 nfl+l 

where 

2--f l(2--n)  2--fl(2--n) 
~i, (15) 

2 ( 1 - f l + f n )  2 - 2 f l + 3 i n  

0~(0.817)2-at2-,) 
n -  (16) 

2a" + a 

09=9.49122 x 10 -3 In(n+0.0785) (17) 

Now, T can be calculated from Equation 3 by using an 
explicit finite-difference method. Once the temperature distri- 
bution is known for any axial distance, the local Nusselt number 
can be evaluated. For  constant wall temperature, 

Nux= - 2  (80/OR+)w (18) 
1 - 0 m  
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where 

0=  T -  T O (19) 
Tw- To 

For constant heat flux, 

2 
Nux - (20) 

0w--0m 

where 

T-To 
0 = (21) 

qR/k 

.(~ OUR + dR + (22) 0m=2 

Finally, the average Nusselt number is 

Nu.=!ffNuxdx (23) 

Results and discussion 

The ultimate test of a numerical method is to compare the 
calculated results with experimental data. Experimental data 
in the entrance region are not readily available for turbulent 
flow of a non-Newtonian fluid in a tube. The only way to 
determine the accuracy of the present results is to compare 
them with solutions to the case of the fully developed flow. 
Therefore we compared our numerical results with the case of 
Newtonian fluids, using the correlations of Colburn, Dittus, 
and Boelter and Kaufman and Isley, as shown in Table 1. For  
non-Newtonian fluids, we compared our results with experi- 
mental values obtained by Yoo, ~ ~ as shown in Tables 2 and 3. 

It is evident that higher Reynolds numbers result in higher 
Nusselt numbers, which was expected because of the formation 
of eddies at the tube wall. However, results show that higher 
Reynolds numbers require longer entrance regions before the 
velocity and temperature become fully developed. Both the 
constant wall temperature and constant heat flux cases were 

Notat ion  

c~ Power-law coefficient as defined by Equation 11 
D Tube diameter, m 
f Friction factor 
n Flow behavior index 
Nu m Average Nusselt number 
Nux Local Nusselt number 
q Heat flux at the wall, W/m 2 
P Pressure 
R Tube radius, m 
R ÷ Dimensionless radial coordinate, r/R 
r Radial coordinate, m 
Re' Generalized Reynolds number 
T Time average temperature, °C 
T' Fluctuating temperature, °C 
U Time average axial velocity, m/s 
U¢ Time average core velocity, m/s 
u' Fluctuating axial velocity, m/s 
V Time average radial velocity, m/s 
v' Fluctuating radial velocity, m/s 

X 
y+ 

Greek 
P 
#a 
"t 

Ot 

6 
4, 6" 

i 
t2 
O) 

0 
O, 
Om 

Axial coordinate, m 
Dimensionless distance normal to the wall, 
y + = p UY/#a 
Mixing length, m 

letters 
Density, kg/m 3 
Apparent viscosity, kg/m. s 
Shear stress, kg/m.s 2 
Thermal diffusivity 
Boundary layer thickness, m 
Momentum thickness, m 
Displacement thickness, m 
Coefficient as defined by Equation 12 
Coefficient as defined by Equation 15 
Coefficient as defined by Equation 16 
Coefficient as defined by Equation 17 
Dimensionless temperature 
Dimensionless temperature at the wall 
Mean dimensionless temperature 
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Table 1 Comparison between other correlations and present 
model Nusselt number in the fully developed region, n = 1.0 

Dittus and Kaufman and 
Re Colburn Boelter Present model Isley 

28,326 231.45 283.90 301.58(66.22) 312.51 
32,372 257.54 315.90 324.66(72.25) 349.59 
36,419 283.25 347.14 345.90(96.34) 385.96 
40,465 308.16 377.66 374.96(108.39) 421.67 

Table 2 Comparison between experimental and predicted Nusselt 
number in the fully developed region, n=0.8382 

Re Experimental Nu Predicted Nu Mixing length 

temperature clearly does not have any effect on the Nusselt 
number, as is also evident from the correlations in Table 1. 

The effects of Prandtl number on Nusselt number for 
Newtonian fluids are illustrated in Figures 5 and 6. Higher 
Prandtl number fluids should have higher Nusselt numbers. 
The effect of Prandtl number on Nusselt number is not 
considered for the case of non-Newtonian fluid because non- 
Newtonian fluids with the same Prandtl number for a different 
flow behavior index would have a different Reynolds number. 

15,600 200.84 233.14 60.20 
18,716 232.51 269.20 66.22 
21,856 264.00 276.62 72.25 
23,451 295.11 305.87 84.29 
25,062 310.91 328.59 90.32 
28,000 362.65 348.14 96.34 

C o n c l u s i o n s  

Numerical computations based on a mixing-length model are 
presented for a boundary layer type flow. The findings can be 
used to predict the local flow behavior of non-Newtonian fluids 
in the entrance region of a tube. The accuracy of the present 
method was tested using published data and available empirical 

6 0  

Table  3 Comparison between experimental and predicted Nusselt 
number in the fully developed region, n=0.8924 

Re Experimental Nu Predicted Nu Mixing length 

11,000 149.91 207.17 42.13 
26,580 254.54 230.88 78.27 
38,583 352.81 305.60 84.29 
41,647 383.99 330.20 90.32 
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Figure I Local Nusselt number in the entrance region, constant 
wall temperature 

studied and the results are illustrated in Figures 1-3. As shown, 
the flow behavior index, n, affects the Nusselt number such that 
the Nusselt number increases with decreasing flow behavior 
index. The increase in the mean temperature of the fluid is 
shown in Figure 4. Also, the effect of wall temperatures 
on the Nusselt number is presented in Table 4. The wall 
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Figure 4 Mean temperature in the entrance region, constant wall 
temperature 

Table  4 Effect of wall temperature (n=0.8924) 

N u t .  

x/O Tw= 100°C Tw = 400°C 

5.98 3836.9 3748.2 
12.01 2030.1 2058.2 
18.03 1411.9 1445.7 
24.05 1098.9 1123.8 
30.08 898.6 923.8 
36.10 770.5 786.9 
42.10 677.1 687.1 
48.15 604.4 610.7 
54.17 546.2 550.4 
60.20 498.6 501.5 
66.22 458.6 460.9 

correlations for the case of the fully developed region. It should 
be noted that "entrance da ta"  are not  available for the case of 
non-Newtonian fluids. 

Our  results show a slight difference between predicted and 
experimental Nusselt numbers. As expected, both Reynolds 
number and Prandtl  number affect the hydrodynamic and 
thermal entrance lengths. We have shown that, compared to 
the Newtonian fluids, pseudoplastics have longer hydrodynamic 
and thermal entrance lengths. Additionally, pseudoplastic fluids 
show a higher heat transfer rate than do Newtonian fluids. 
These results should provide insight into the operat ion and 
design of heat transfer equipment. 
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Figure 5 Effect of Prandtl number on local Nusselt number in the 
entrance region for a Newtonian fluid, constant wall temperature 
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Figure 6 Effect of Prandtl number on average Nusselt number in 
the entrance region for a Newtonian fluid, constant wall temperature 
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